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STRESS SINGULARITIES AROUND A CRACK
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Abstract—Presented in this paper is the solution of the problem of an infinite plate containing a crack through
its entire thickness under uniform bending at infinity. The solution is based upon the recent plate bending theory
developed by Green and Naghdi, into which couple-stress is incorporated.

It is shown that the structures of the moment resultant singularities in the couple-stress theory depend upon
the elastic constants of the plate. Numerical results are presented which indicate that, for the values of Poisson’s
ratio considered, the stress intensity factor is always larger than that predicted in the Reissner theory for this
problem. It is also observed that an abrupt rise in the magnitudes of the moment resultants near the crack tip
occurs in very thin plates as the couple-stress material coefficient increases from zero to a small positive value.

NOTATION
x{i=1,2,3) Cartesian coordinate directions
X, y Cartesian coordinates
[N scalar functions of x; and x,
v2 two-dimensional Laplacian operator
P applied surface force per unit area

a%, g, Agy Ly

constitutive coefficients
a material constant defined by equation (2)

v Poisson’s ratio
E modulus of elasticity
D flexural rigidity
h plate thickness
My, = 1,2) components of moment per unit length
3a components of shear force per unit length
M, symmetric part of M,
[f) antisymmetric part of M,
Oup two-dimensional Kronecker delta
€48 two-dimensional permutation symbol
u; deflection of Cosserat surface
o, angles of rotation

S
Als), Bls), C(s)

ofs) a function of s defined by equation (12)

2a crack length

M applied bending moment per unit length

Q(s), £(s), g(s) functions of s defined by equations (17) and (21)

G(x), ¢(t) functions defined by equations (22) and (27), respectively

JorJ 1, 1o, Ko Bessel functions

R,K,n A, constants defined by equations (35), (47), (48), and (61), respectively
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h(s), b(s) auxiliary functions of s defined by equations (34) and (44), respectively
E,n, ®(&) dimensionless variables
Fy(t, 1), F(&,n) kernel functions
U(t) unit step function
8(t) Dirac delta function
5 non-singular part of M,

P(z,‘, x} a function defined by equation (64)

order of magnitude symbol
r 6 Ty, 8,,r2,0, polar coordinates
(1), &) intensity of singularity in the Green—Naghdi and Reissner theories, respectively
An Ly dimensionless material constants

constant in the Reissner theory
&, n, g(&), win) arbitrary variables and functions used in Appendix I
H{(x), y(&), f(n) functions defined in Appendix I

INTRODUCTION

THE effects of couple-stress on stress singularities in plate bending have been explored in
[1] by considering several fundamental problems involving concentrated forces and
moments. The solutions of these problems were achieved through the application of the
theory of a Cosserat surface derived in [2] and specialized by Green and Naghdi [3] for the
case of an elastic Cosserat plate under small deformations. Briefly, the conclusions reached
in [1] were as follows:

{1) The application of Green and Naghdi’s couple-stress theory of plate bending
alters the structure of the singularities predicted by Reissner’s theory [4]. In most
cases considered, the maximum intensities of the moment resultants are lower than
the corresponding values in Reissner’s theory.

(2) The singularities in the couple-stress theory reduce to those in the conventional
theory as the couple-stress material constant approaches zero.

Considered in the present paper are the effects of couple-stress on stress singularities
in a plate bending problem involving a geometrical discontinuity. Specifically, the problem
deals with the stress singularities in a bent plate of infinite extent containing a crack through
its entire thickness. The general solution for a semi-infinite plate found in [1] is employed
to reduce the solution to a set of dual integral equations. These in turn are transformed
into a regular Fredholm integral equation of the second kind. The resulting integral
equation is solved numerically by means of an electronic computer.

GOVERNING EQUATIONS

As shown in [3], the governing equations for an elastic, isotropic Cosserat plate under
static loading can be conveniently expressed in terms of three potential functions,

¢, ¥, and ¥, as:

Vi = —p/as
Vi = -—¢ (1)
g

where p is the intensity of the distributed load normal to the plate surface,
12 = 056/ [ £ (2)
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and a5, ag, as well as o5 and a, below, are constitutive coefficients. These coefficients are
related by

Aqs = VD
3)
0:6+cx~, B (I“V)D
where
D = ER*/[12(1 —v?)] @

and v is Poisson’s ratio, E is the modulus of elasticity, and h is the plate thickness. The
surfaces of the plate are taken to be free from applied coupies.
The stress and displacement variables are related to the potential functions [1] by

(otg +at4)
M(aﬂ) = flsauavzx + —9*“2"“1(2%,@ + anw’yﬂ + 'Sﬂyw’yu)

Muz] = (___a6;a7)v._,‘/,
N3a = a3(¢aa+81ylﬁay) (5)
uy = ¢—yx

511 = Xaa+£a7ll/1y
where d,, is the two-dimensional Kronecker delta, ¢, is defined by

g1y =8, =0

(6)
and x(i = 1, 2, 3) refers to a right-hand Cartesian coordinate system such that x, and x,

lie in the undeformed Cosserat surface. Also, u, is the deflection of the Cosserat surface,
d, are the angles of rotation shown in Fig. 1, N;, and M, are the shear and moment

812 =€y =1

3,

OA = INITIAL DIRECTOR
/ 0B = DEFORMED DIRECTOR
Xy

FiG. 1. Definition of §,.
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resultants (each per unit length), respectively, as displayed in Fig. 2. In equations (5),
M, is resolved into its symmetric and antisymmetric parts, given by

Mgy = Mgoy = Mo+ Mp,)

(7)
— . |
Mgy = — My = oMy —My,).
X3
T p
Naz Map
N3I /
_‘\__’ Mip

~’
-
- My

X2

-

%

FiG. 2. Definition of M,;, and N, and p.

A comma denotes partial differentiation with respect to x,; Latin indices have the range
1, 2, 3, while Greek indices only take the values 1, 2.

GENERAL SOLUTION FOR A SEMI-INFINITE PLATE

Consider a semi-infinite, elastic, isotropic, homogeneous plate bounded by the planes
X3 = +h/2and x, = 0, where — o0 < x; < o and 0 < x, < oo. At infinity, it is required
that

M
N 3a 0
Henceforth, the replacements
X, =X, X=y 9)

shall be employed.

In the specific problem discussed later in this paper, the plate will be subjected to mixed
(stress and displacement) boundary conditions on the edge y = 0 and normal load p is
taken to be zero. In this problem, the boundary conditions on y = 0 are symmetric with
respect to the y-axis. Hence, according to [1], the appropriate solution for the stress and
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displacement variables is given by
f <{ [2v+sy{1—v)]—CD{1 —v)s } e ¥ +i(l - v)DBsa e“‘”> cos(sx) ds

M,, = J <{a3A[2—-sy(1—v)]+CD(1—-v)sz} e ¥ —i(1-v)DBsoue™ ¥ >cos(sx)ds

M, = %f{) {ifx3A(1 —sy)+2CDs*] e~ + DB(a?* + 5%) e "%} sin(sx) ds

. (10)
My = %?lfo Be "% sin(sx) ds
N3, = _—%f (idse™*+ Bax e~ ®) sin(sx) ds
Ni; = —f {—Ase "4+ iBse™ ™) cos(sx) ds
and
8 = ?zl?_[o [i(“;’;y—(:s) e~ By e‘“] sin(sx) ds
11® {|asAd - . —a
5, =~.f 2" (sy—1)—Cs| e~ +iBse ™} cos(sx)ds (an
nJo || 2Ds
Uy = ;lzfo [(1+%)A C] e~ ¥ cos{sx}ds

where A4, B, and C are functions of s and are defined in a particular problem by the boundary
conditions on the edge y = 0. Also

a = ofs) = (s> + 1/} (12)

BENDING OF A PLATE CONTAINING A CRACK

Consider the problem of an infinite plate — 0 < x < w, —00 < y < c© which
contains a crack of length 24 parallel to the x axis through the entire thickness and subjected
to a bending moment M (per unit length) about the x axis at infinity. The general solution
to this problem can be formulated by superposing the solution for the trivial problem of a
uniform bending moment and that due to a constant bending moment per unit length
applied on the crack boundaries with no loading at infinity. It is the latter problem which
will be considered here.

Because of symmetry about the x axis, it can be seen that the functions N3, and M, ,
must vanish along the entire x axis, while d, is zero for |x} > a, where the origin is taken
at the center of the crack. Furthermore, the problem is symmetric with respect to the
y axis. Therefore, it is sufficient to consider the region 0 < x < o, 0 < y < oo under the
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boundary conditions on y = 0,
N3s(x,0) = M ,(x,0) =0 for all x
M,,(x,0) =M, x<a
9,(x,0) =0, X>a
while at infinity, it is required that
i}f:’: : g as (x,x,)} = o

Using equations (10), equations (13) are satisfied if
Als) = s*Q(s)Cls)
B(s) = —is*Q(s)C(s)

where
Aog +otq)

as(1+v)+ 20 + aq)s?”

Qls) =
Substituting equations (16) into (10) and (11), using (12), renders
M, = 1 on s2C(s) cos(sx) {<g5Q(s)[2v +{1 —vjsy]—D(1— v)> e ¥
nJo 2
+ D(1 — v)sQ(s)fsye ™ } ds
M,, = ~1— on 52C(s) cos(sx) { S.~(—3-(2(s)[2—(1 —v)sy]+D(1— v)> e”
nJo 2
— D(1 —v)sQ(s)afs) e } ds

u ;:)D f: s?C(s) sin(sx){ [%’:Q(s)(i —sy)+2] e

- Q(s)(2s2 +£5) e‘“”} ds

My =

My = i%‘-jimf” f S0l e sin(sx) ds

N, = i‘;i ) S2Q(s)C(s) sin(sx) [ols) €~ — se ] ds

Niyy = %—3 f : SPQ(s)C(s) cos(sx)(e~* — e~ ) ds
and

o= ;lzf 5C(s)sin(sx) {SQ(S)oc(S)e"“u [—«“332%‘5’% 1] } ds

S, = %J‘w sC(s) Cos{sx){szg(s)e“@.;_ [%Q(S)( —1)- 1] —s)’} ds

[

f Cis)e™ cos(sx){(1+ ) s20(s)— 1]

(13)
(14)
(15)

(16)

(17

(18)

(19)
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Hence, satisfaction of the remaining boundary conditions, equations (14) and (15), requires
that

on s2C(s) f(s) cos(sx) ds = M, x<a
° (20)
f sC(s)g(s) cos(sx)ds = 0, x>a
0

where

f(s) = a3Q(s)+(1—v)D[1— sas)Q(s)]

(21)
gls) = Q(S)(S 551
Thus, the parameter C(s) is defined by the solution of the dual integral equations (20).
The present object is to transform the dual integral equations (20) into a regular integral
equation of a standard form. This is accomplished by first defining a new variable G(x),
such that

G(x) = %Jm sC(s)g(s) cos(sx) ds (22)

0

which, with the second of equations (20), implies that
sC(s)g(s) = f G(x)cos(sx)dx (23)
0

For convenience, the first of equations (20) is integrated with respect to x. Inserting
equation (23) into the resulting equation gives

f —_ s1n (sx) dsf G(n) cos(sn) dn = tMx, x<a (24)
0

Summarizing, G(x) must vanish for x > a and must satisfy equation (24) for x < a. The
parameter C(s) is then given by equation (23).

Guided by the solution to this problem in the Reissner theory {4] and assuming that
couple-stresses will not alter the orders of the stress singularities given in the conventional
theory, the solution for G(x) is assumed to be of the form

0 xX>a
G(x) = T (o)t dt (25)
x (t2 - W’ =4

where ¢(t) is assumed to be continuous on the interval [0, a). Substituting equation (25)
into (23), and applying the Dirichlet formula for interchanging the order of integration [5]
gives

sC(s)g(s) = —; f : t(t)J o(st) dt, x<a (26)
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where J, is the zero-order Bessel function of the first kind. Similarly, putting equation (25)
into (24) yields

i l(—slsin(sx) ds f n 1p(to(st)dt = 2Mx,  x<a 27)
¢

o g(s)
With the aid of equations (17) and (21}, one finds
f_(s_) - ot o)

2.
) 0 [a(3+v)+ 2o + o, )(s* — as)] (28)
As shown in [1], the Laurent expansion of «(s) for large s is given by
R 1 -,
ofs) = s+2izs 82“s3+16,1635+0(s } ass-— oo. (29)
Letting
S(s)/g(s) = Rlh(s)—1] (30)
where
R=F 00 04 —a,) (1)

6
it can be observed that
h(s) = 0O(s"%) ass— oo.
Substituting equation (30) into (27) and interchanging the order of integration renders

¥ tp(t)dt  2Mx
o(x* =t R’

f ’ t(r) de f ’ h(s)J o(st) sin{sx) ds — x<a (32)
o o

where the last term on the left side of the equation follows from an integration with respect
to s {7

Since equation (32) is a form of Abel’s equation, as shown in Appendix I, the solution
is given by

2 t ] o0
o) = ;L G;{%;l}—gﬁ—l-k . w(t) dr f . sh(s)J o(s7) cos(sx) ds}, t<a (33)

Carrying out the integration with respect to x and introducing the dimensionless variables

{=tla, n=c/a, D)= —Rad)2M (34)

equation (33) becomes
1
o) = £+ f OFE M, &< (35)
where

F(&n) = @& f . Sh(g)J olsmiJ o(s) ds. (36)
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The integral in equation (36) is convergent except when ¢ = 5 = 0, in which case it diverges
at the upper limit since the integrand is O(s~!) as s — co. It is possible to determine the
singular part of the integral in closed form and increase its rate of convergence by defining

_ (ot +at7)?
bs) = o)+ o Rirears + 1)
- 37
=0(s"% ass-—
and using the result
|7 it oeatns ds = LK oom, 0 <& < 09)

where I, and K, are the modified zero-order Bessel functions of the first and second kind,
respectively. Putting equation (37) into (36) and using (38) yields

F(&,m = F(n, &) = (¢, n)’-’UO Sb(g)Jo(S’?Vo(sf) dS~KaZIo(nan)Ko(na§)}

39
0<n<ix<l 49
where
_lagta)®  aalastar)
k= 8oy RA*  dagfag2+v)—as) (40)
and
n? = 1/22% = a,3/2us. (41)

The solution of the problem follows from the solution of the regular Fredholm integral
equation of the second kind, equation (35), where the kernel F(&, i) is defined by equation
(39). Once equation (35) is solved, the parameter C(s) may be determined from equations
(26) and (34). It is more convenient for subsequent use to integrate equation (26) by parts,
with the result that

SCOR) = o a3 | o0 @)

or

¥ ’
SClskgls) = "R {— O(1)] (sa) + f ) UAasé)[%] dé}. 3)

The other dependent variables may now be found from equations (18) and (19).

Since b(s) vanishes rapidly for large s according to equation (37), equation (35) can,
in general, be easily solved by means of an electronic computer. However, for the case
when o, and o, are both very small, convergence becomes very slow. In fact, for the limiting
case when a4 = o, = 0, although ®(¢) remains finite, F(£, n) becomes singular. Thus it is
necessary to solve this case analytically. Using equations (28) and (30) with ag = o, = 0
gives

h(s) = —2/(1+v). (44)
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Therefore, equation (36) is carried into

1
Fem =250 [ samafsy ds (45)
0
Since
¢ Iieootns) ds = ve-m) (46)
(1]
where U(t) is the unit step function,
1, t>0
Ui = <43 t=20 (47)
0, t<0

differentiating equation (46) with respect to ¢ yields
& [ saole9ons ds = 5E=n) (48)
0
where () is the Dirac delta function. Putting equation (48) into (45) renders

2
F&n) = —g0C—n). (49)

Hence, from equation (35), the closed representation

(1+v)

i’
3+ v)é (30)

o) =
is obtained.

In order to determine the expressions for the singularities in the shear and moment
resultants, the fact that these singularities are only due to the first term on the right-hand
side of equation (43) will be demonstrated. For example, consider the influence of the
second term on the right side of equation (43) on the moment M, (x, 0). Letting this portion
of the moment be represented by M¥,(x, 0), equations (18) and (43) give

Ma
R

— (o + ;) } cos(sx) dsf &J, (asé)[d)(é)] dé

M#¥,(x,0) = é(-{ O(s) [vory + (g + atq)se]

(51)

Since the character of this function near the singular point is governed by the behavior
at infinity in the s-plane, the following Laurent series are employed :

_(“6+°‘7)sz__(1+v)

1
— = +0(s™?)
X 1 K (1+v) i 2)
L\ i -
o) = s2 2(a6+a7)s4+o(s> )
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as s — oo, in addition to equation (29) for «(s). Putting these results into equation (51) gives

M¥ (x,0) = A, Jw [140(s™?)] cos(sx) ds fl CJl(asC)[d—)(&—?] dé (53)
(3] 0
where
_ _Ma(aﬁ + a7)(a7 + Va6)
Ay = 3Rz, (54)

Using the results

(@)™, 0< x<at

fw J 1(as&) cos(sx) ds = at . (55)
’ (- a?E)x+ (X —a2ED)E) x> af >
equation (53) becomes
x/a 4. [oET
ME0 = —da [ PExde+S | [_gﬁ] &
° @l ¢ (56)

' @) |
+ f ) 0(1)[?—] d¢

for the range of 0 < x < a. In the event that x > g, the upper limit of the first integral is
taken as 1 and the second integral is omitted. In equation (56), the replacement

) &2 o) |
P(¢, x) = (xz _a2£2)i[x+(x2 _a2€2)*}][ f* ] (57)

is employed. Let the first integral in equation (56) be written as

f:/apdgr.f:m_e}’darm Pd¢ (58)

xfa—¢

where ¢ is a small positive number. The first integrand on the right of equation (58) has no
singularities in the interval of integration and the second integral approaches (£)*0(1) as
£ — 0 and x — a. Therefore, the second term on the right side of equation (43) does not
contribute to the singularity in M, ,. The same result can be illustrated in a similar way for
other shear and moment resultants.

In order to determine the closed representations of the stress singularities, it suffices
to let

nMa

Cls) = —W(I)J 1(sa) (59)

and use the appropriate Laurent expansions in the integrands of equations (18). Recalling
equations (29) and (52), and utilizing the Laurent expansion [1],

2 2 3
—ay _ =Sy _ y y 6 y—y e 6
) © [1 7725 T 82857 T Tagses +0(s"%)| ass— © (60)
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equations (18) become

M, =M “1)“(“62";2;)(“6 +7) '{ : T ,(sa) €™ cos(sx)[1— ys+O(s~ )] ds
My, = W f: J {sa)e 7 cos(sx)
x {-2%[&5(2%— o1 5 0 2) + O™ 1}} ds
M = “MQ(;I){‘::‘G %) f : J 1 (sa) e sin(sx)[(org — ot7) + (votg + 27)sy + Os~ )] ds  (61)
My = -M m)"{;j{;e“") (8 T %7) f " 7 (sa) e~ sin(sx)[1+ Ofs~ 1)) ds

Ny = -M@ii:(a6+a—,} f: Jy(saye™ sm(’sx){ +0(S’l)] ds

MODalag +o-)
Ny, = MOt »IOJ

(sa)e™* cos(sx)[ e Ofs™ 1)] ds.

222
Integrating equations (61) (see {7]) and defining r, ry, 5, 6, 6, and 6,, as in Fig. 3 yields
Md)(l)a(va(;‘*‘a?) ¥ 93 +92 ay . 3
= —— — = | sin (G, + 6 O
M,, et =l - cos ] 3 +r1r2 smz( +8,) [+ 0(1)
—~M®(1)a

M,, =
27 [as2+v)—adlrira)?
0,6
X {[d6(2+ V)"‘ &7}‘2‘ 003{9 12 2) +"“”“‘(V(16 -+ a?) Sln—*((?‘ + 62)} + 0(1)
~Md(1)a
My = 62
R P FaT N [ ©2
r. 8, +6,1 (vagtoyay 3 «
X {(ms a?)g S]n(g“" 2 ) + r}rz COS'E‘(G} + 62) “+ O{I)
MO Nag—am)r . ( 91+92)
Mgy = n{g— + 1
P SRS T N A
N3 = 01} N3, = 0(1)
as ryry - 0.
In the limit as «y — o, L.e. with couple-stresses absent, equations {(62) reduce to
Mda[ » 8, +0, ay
Mll = W[”ECOS(Q* 5 S}ﬂ*(61+92) +O(1)
= Md)af r 0,+6,
M22 == W{ECOS(é 2 +"““" sin— {8 +82) +O(1} (63)
- a2
My =M, = wcos-{91+82)+0(1)
{riry) 2

Ny, = 0(1) Ni, = O(1)
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y

(x,y)

I
8
A/( 9 2 .

(-0,0) (0,0} (a,0)

F1G. 3. Polar coordinate systems.

where d(1) is the value of the function @(1) for the case when ag = «,. Equations (63) agree
with those given by Hartranft and Sih [4] using the Reissner theory of plate bending.
It should be noted that the governing equation for ®(&), equation (35), reduces to the
corresponding equation in the Reissner theory [4] in the limit as ag — . Hence the stress
intensity factor (®(1) in the present notation) is the same in the Reissner theory and in the
Green—Naghdi theory as ag — .

It is more informative to express the stress distribution in the crack-tip region in terms
of polar coordinates r,, 6, with respect to an origin at the point (a, 0). To this end, it is
observed thatr, — 2g,r -+ a,0, = 0,6 — 0 as r, - 0. Thus equations (62) may be written
as

MO(l)a*(va + o)

0 . .
= [a6(2+v)—a73 @) [— cos ?2+%sm 0, sin %92] +0(1)

—M®(1)a* ( Votg + ) . :
Mz = [a6(2+v)—a7](2r2)*{[ o2+) =] cos 2 2 62 ~sin 0 sin %92} o0 (64)
—M(I)(l)a* (vag+o) .

My, = [a6(2+v)—a7](2r2)*[_(a6 o) sm ) +———E‘— sin 6, 005702:|+0(1)

— M®(1)(ag — a7)a*
021~ 2 +v)— a7}(2rz)*

N3y =0(1) N, =0(1)

asr, - 0.

+0(1)

For completeness, and to check the singular functions of equations (64), these func-
tions were substituted into the governing equations in the present theory and the deflection
u; and angular displacements J, in the crack-tip region were computed. This work is pre-
sented in Appendix II.

While the orders of the singularities in the moment resultants in the present theory
and the Reissner theory are the same, their functional relations in x and y are different.
In contrast to equations (63), the angular distribution of some of the singular functions in
equations (62) depends upon the elastic moduli. It is also interesting to make some
qualitative observations regarding the effects of couple-stress on the material behavior in
the region ahead of the crack, i.e. for 8, = 0, the direction in which the crack would be
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expected to run when it reaches its critical length. Along this line, the Reissner theory
predicts that the ratio M, /M, is equal to unity while M, = M,, = 0. In the couple-
stress theory, along 8, = 0, one finds that

M, vag + oy

M;, B (2 +v)—ay ()

However, since the strain energy function must be positive definite, it is necessary to
require that [1]

e 2 0

(66)
(ag—a7) 2 0.
Thus, the corresponding ratio in the couple-stress problem must satisfy
1-v M,
- < <L
3+vT M,, (67)

It appears that couple-stresses can effect an appreciable revision in the hydrostatic
component of stress, as compared to the corresponding component predicted in the
Reissner theory. Thus the material behavior, e.g. its yielding characteristics, may be
considerably influenced by couple-stresses.

In order to gain further insight regarding the influence of couple-stress in plate bending,
equation (35) was solved numerically. The curves of Figs. 4 through 10 represent certain
features of the solution. In these curves, three values of Poisson’s ratio are considered.
In addition, the following dimensionless constants are introduced

12 = 2%/a® = agla’a,

L} = L?/a® = (06— a-)/a’as. (68)

If the parameter A is identified with the constant k in the Reissner theory, as suggested
in {1], ie.,

A% = k? (69)
then A? may be expressed as
A2 = k*/a* = h?/10a>. (70)

Thus, 4, is a measure of the ratio of plate thickness to crack length. The constant L is a
material length parameter or couple-stress coefficient.

Figure 4 represents the stress intensity factor ®(1) as a function of 4, for various values
of L, with v = 0. The minimum value of 4, for each curve is limited by the condition
o+ a4 = 0. The curve for L, = 0, which corresponds to the Reissner solution, appears to
represent a lower bound for ®(1). A finite jump discontinuity exists in the neighborhood
of L, = 0. This behavior was also observed in [6]. Thus, in a plate having a very low
h/a ratio, the effects of couple-stresses can be very severe. It is noted that all of the curves
in Fig. 4 tend to merge and asymptotically approach a limiting value ®(1) = 1 for very
large values of 4. The ordinate of each curve also attains a maximum value of unity at the
point where a;, = —ag or L, = (2)¥1, provided A, > 0. This point physically represents
a plate of vanishing flexural rigidity D. The value ®(1) = 1 for L, = (2)*4,(4, > 0) can be
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established analytically by considering equations (28), (30), (35), and (36) with
oy = —a6 # 0.

L,=0.! L,sl0 L,=30
&

o)

03 1 i
[¢) 1.0 2.0 3.0

A

Fi1G. 4. Intensity of singularity vs.4,,v = 0.

The curves of Figs. 5 and 6 illustrate the same type of behavior as discussed above for
different values of Poisson’s ratio, and therefore require no additional comment. It is
observed, however, that the curve representing the Reissner solution for v = 0-3 is in
agreement with that given by Hartranft and Sih [4]. Curves showing the relationship
between ®(1) and L, are plotted in Figs. 7, 8, and 9 for various values of 4, and v. These
clearly show that the Reissner solution (L, = 0) represents the lower bound for ®(1) in
each case considered. This result is in qualitative agreement with the results presented in
{6] for an analogous plane couple-stress elasticity problem.

L,=0.l L:1.0 L,=30

0.8

o) 0.7

0.6

0.5

oat 4

0.3 I i
[} 1.0 20 3.0

A\
FiG. 5. Intensity of singularity vs. 4,, v = 0-3.
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Fi1G. 6. Intensity of singularity vs. 1,,v = 0-5.
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F1G. 7. Intensity of singularity vs. L,, v = 0.

Since the preceding curves cannot be expected to be valid for large values of 4, in the
present thin plate theory, blown-up curves for L; = 0-1 and small 4, are drawn in Fig. 10.

CONCLUSIONS

Some insight as to the effect of couple-stress in plate bending, at least on a qualitative
basis, has been achieved through the investigation of the crack-tip stress field in a Cosserat
plate. Since the ratio M, /M, , ahead of the crack may depart considerably from the value
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FiG. 9. Intensity of singularity vs. L,, v = O'S.

of unity predicted in the Reissner theory, the extent of inelastic deformation in this region
may be appreciably influenced.

The Reissner solution for the stress intensity factor is the lower bound for all cases
considered, although this is expected to be true in general. This result is in qualitative
agreement with the results presented in [6] for a corresponding plane couple-stress elasticity
problem.

It is interesting to note that, as in [1], the singularities in the moment resultants in the
present theory reduce to those given in the Reissner theory as L — 0. In [6], the analogous
limit depends discontinuously on the material length parameter. This fact is evidently
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explained by consideration of the boundary conditions. In plate bending problems, using
the present formulation, the number of boundary conditions remains unaltered as L
approaches zero. The reduction of couple-stress elasticity to classical elasticity, however,
is accompanied by a reduction in the number of boundary conditions (as well as a lowering
of the order of the system of governing equations), which appears to represent the source
of the discontinuity.

L0 Y r
os}h ~
P o8} v=0.5 -4
v=0.3
¥=0
o7} -
06 A L
0 0.1 0.2 0.3
X‘

Fi16. 10. Intensity of singularity vs. Ly, v = 01,
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APPENDIX I
Solution of Equation (32)
The general form of Abel’s equation is given by

" g(§) d¢
0 ('l - é)a

for which the unique solution is

= w(n), n=>0, O<ax1

g(&) =

sin an[ ¢ wndy +w(O):l
n o(E—m)t—® &

Equation (32) may be written as

:é?(%)::—;;=H(x), O0<x<a

where

-2 a ©
H(x) = 11;4 X+ f t(t) dt f h(s)J o(st) sin(sx) ds
0 0
H©0) = 0.
In equation (73), let
x(=n  2=¢

so that

x x2=1n

2t dt = d¢&, f dt = f dé
0

0

which transform equation (73) into

4 d
MO osn<a
where
W = (&)

fn) = 2H(n)

Thus, the solution of equation (75) is expressed by

_ 108 fmdn 2
WO = | wooh 0si<a

Letting

and using
f'(n)dn = 2H'(x)dx

549

(1)

(72)

(73)

(74

(75)

(76)

(77
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equation (77) becomes

) = gy = 2 [ H O dx

; 0 (tz - xz)%,

Putting equation (74) into {78) leads directly to equation (33).

APPENDIX II
Complete Solution in the Crack Tip Region

0>r<a.

(78)

In order to determine the complete solution in the crack tip region, it is necessary to
write the pertinent governing equations in terms of polar coordinates. For sake of
familiarity, let the polar coordinates r,, 6, in Fig. 3 be replaced by r, 6. By standard

techniques, the following equations may be written

1 1
Mrr,r+;Mr0,0+;(Mrr_M00) = N3r
1 1
Mer,r+;Mea,e+;(Mye+Mar) = N3
1 1
Ky = 5r,r? Kgg = ;ér+;50,9

1
Ky = ;(5r.8_59)! K¢ = 59,}'

M,, = as(K,, + Ko} + (2t + 27)K,,
Mgy = as(K,, + Kep) +{0tg + 2t7)Kgp
Mrﬂ + Mﬂr = (a6 + a'?)(xtﬂ + Kg,,)

M,o— Mg, = (05— o7) (K, —Kq,)
1 1
N3r,r+;N3r+;N30,8 =0

N3r = a3(5r+u3,r)

1
Nig = 23(d +;"3,a)

(79)

(80)

81)

(82)

(83)

where the dependent variables in the polar coordinate system can be defined by replacing

1 by rand 2 by 8in Figs. 1 and 2.
By use of the relations

sin A cos B = 4{sin(4+ B)+sin(4 — B)]
sin A sin B = {{cos(4 — B)—cos(A + B)]

(84)
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the functions in equations (64) become

—(vag +a4)C 0 5
M, = (:r—*ﬂl 3cos§+cos50)+0(l)
-C, 0 5
M2z = 5 {[%6(8+ 5)— 3a;] cos 5 — (vt + a7) c0s > 8¢ +O(1) (85)
—-C, 0
M, = o [—(@4+V)ag+3a,]sins +(va6+oc7) s1n—0 +0(1)
—Cilag—a
M[IZ] = _l(r: 7) _+ 0(1)

N31 = 0(1), N32 = 0(1)

as r — 0, where

Mao®(1)
Ci= [e(2+v)— cxﬂ() (86)

Transforming equations (85) into polar coordinates and use of (84) renders

-C,

M, = 4rt

{[ (4+v)ag + 3a,] cos —0+ [(4+ 5v)ag +a] cos Z} +0(1)

Mg = 42 {[(4+v)oc6-—3a—,] cos§0+[(4+3v)a6——a7] cosg}+0(1)

-C 4 3

M, = 1[“6(4:; v)— a7]{ sin — 2 0+ sin g) +0(1) (87)
-C, .3 . 0

Mo = — {[(4+v)a6 —3a;] sin 56— [(4~v)as — Sa;] sin 5} +0(1)

N3, = 0(1), N3 = 0(1).

Direct substitution shows that the singular parts of the moment resultants satisfy the
equations of equilibrium (79) with N5, = N3, = 0 since there are no singularities in the
shear resultants. Using the third and fourth of each set of equations (80), (81), and (87),
one can show that

1 .3 .0
Oy, = —F(Cz s1n§()+C3 smi (88)
or
S = —2r*(Czsm;0+C3s1n )+f(0) (89)

where f'(0) is an arbitrary function of 6, and also

S,9= — r*}(l’uC2 sin ; 0+ C,sin - ) +£7(6). (90)
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In equations (88)+90), the following contractions are employed :

 [neld )= 30,1C,

C =
z Yo+ 7)
[o(4—v) +3a7]C,
Ci= — 91
3 Ao+ otq) G
[og(4—3v)+a;]C,
C4 = - .
Hotg + 0t7)
Integration of equation (90) yields
8, = 2r*(C, cos ;— 6+C, cos-g +f(0)+g(r) 92)

where g(r) is an arbitrary function of r. Equations (89) and (92) are now put into the first
two of each set of equations (80) and (81). In conjunction with the first two of equations (87),
this yields

g+ fO)+ /") +gr)] =0

, " 93)
vrg'(r)+ f(0)+ ["(6)+g(r) = O.
The general solution of equations (93) is given by
=F
g(r) 94)

fi@y= —F+Hsinf+Scos

where F, H, and § are arbitrary constants. Since d,(r, 0) = 0, equations (89) and (94) require
that H = 0. Therefore, the angular displacements are

0
8, = Zr*(C2 cos%9+C4 cos§)+8 cos 6
3 0 3)
Sg = —-Zr*(czsiné—f?-{—cg) sinz)——Ssin&

The constant S cannot be determined unless the solution is extended beyond the region
near the crack tip.

The governing equation for u; is found by substituting equations (83) into (82), with
the result that

1 1 1 1
U3 +;ﬂ3’r + ;uw@ == - (5,’, +;57’ + ;59‘9) . (96)

The boundary conditions for equation (96) are given by substituting
N33(r, 0) = N39(?‘, ﬁ) = 0 (97)

into equations (83). Inserting equations (95) into (96) renders

Viuy = (3C4-—C3)r“*cosg. (98)
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The solution of equation (98) that satisfies equations (97) is given by

* 3
uy = A +%[(9C3 —8C,—3C,)cos 5 0+(3C5—9C,)cos g] (99)
where A is an arbitrary constant.
The shear resultants in the crack tip region are given by
3r¥ 0 3

Ny =04 I:—:—(C4— 3C3)(sin §+ sin 50) —Ssin 0:|
100
rt 0 3 (100)

Nj, =0, (3C3_C4)Z cos §+3 cos 50 +Scos @

which follow from equations (83), (95), and (99).

(Received 13 July 1967 ; revised 4 December 1967)

A6cTpakT—B HacTosmed paboTe npeacTaBsETCA PElUEHHE 3a1a4H GeCKOHEYHOM IUTACTHHKM CO CKBO3HOH
TpeluHo#it, noasepXeHHOR nocTosHHOMY H3rHOY B 6eckoneuHocTd. PemieHne oCHOBAHO Ha nocaepenHel
TEOPHM M3ruba nIacTuHky, paspaboranoi I'puuom u Harxau, koTopas coaepXutT MOMEHTHOE HANIPAXKEHHE.
Oxa3blBaeTCsl, YTO CTPYKTYPA CYMMAPHBIX MOMEHTHBIX CUHIYJIAPHOCTEY 3aBUCHT OT YNPYIHX OCTORHHBIX
naacTuiku. [pencTaBasioTCs YHCIIEHHBIE PE3YNbTAThI, KOTOPbIE YKAa3bIBAIOT Ha TO, YTO KOrAa NPHHHHAETCH
BO BHHMEHHE 3HaYeHue oTHowenus Nyaccona, Toraa Ko3pULUHEHT KHTEHCHBHOCTH HATNPAXEHUS ABJIAETCH
pceraa GonbluMM, YYM 3TO cielyeT W3 Teopuu PeliccHepa nns stodt 3amauu. Habmopmaercs Takxke, uTo
BHE3aMHbIM POCT BEAMYHH CYMMAPHBIX MOMEHTOB OJIM3H KOHLA TpeLMHL! MPOMCXOAHT B OYEHb TOHKHX
IJ1AaCTHHKAX, KOraa XKOMPPHLHMEHT MOMEHTHOIO HANPSXKEHUS NOBBILIAETCH OT HYNA A0 MasoH MONOXHT-
€JIPHOH BETUYMHBI.



